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Abstract 

Remote sensing has been effectively used to measure water clarity in several single- lake studies.  

However, there are still many challenges to applying these approaches to large numbers of lakes 

within a large geographic region.  Our objectives were to: (1) develop a model to predict lake 

water clarity from Landsat data based on 93 calibration lakes across the state of Michigan, and 

(2) examine how the distribution of water clarity across the 93 lakes, as measured by Secchi disk 

transparency (SDT), influenced the model.  We hypothesized that the distribution of SDT in the 

calibration dataset would influence model calibration, and that it is necessary to include a 

complete range of calibration SDT values to achieve a better regional model.  Our regression 

model of field-collected SDT data and Landsat-7 ETM+ data for the 93 lakes resulted in an r2 of 

0.43 (p < 0.001), which was substantially lower than many previous single-lake studies.  We 

simulated a calibration dataset with a different SDT distribution similar to previous studies to 

examine the role of lake SDT distribution in the model fit.  The percent of lakes that had a SDT 

value less than 1.5 m was increased from 8.6% (original dataset) to 47% (subsampled dataset).  

The regression model for the subsampled dataset resulted in an r2 of 0.82 (p < 0.001).  Our 

results show that Landsat can be used to measure water clarity across a large number of lakes 

with a wide range of SDT values.  However, we found the regression model to be sensitive to the 

distribution of SDT values used in the calibrated dataset, and conclude this distribution must be 

taken into account when developing regional models to predict lake water clarity using remote 

sensing. 
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1.  Introduction 

Monitoring the status of inland lakes is critical because they provide an important 

recreational, commercial and aesthetic resource to the public.  The water quality monitoring of 

lakes often includes the monitoring of water clarity using a Secchi disk.  Although more 

sophisticated measurement techniques exist, Secchi disk transparency (SDT) appears to be a 

relatively good coarse measure of water clarity, partly because it is easy and inexpensive to use.  

The use of SDT has been widely adopted in many lake monitoring programs worldwide (Bukata, 

Jerome, & Burton, 1988; Wallin & Hakanson, 1992; Lee, Jones-Lee, & Rast, 1995).  Several 

studies have found SDT to correlate well with a number of other water quality variables, such as 

trophic status, phosphorus loads, planktonic chlorophyll concentrations, hypolimnetic oxygen 

concentrations, suspended sediment concentrations, and fish yields (Oglesby, 1977; Lorenza, 

1980; Lee, Jones-Lee, & Rast, 1995).  Despite the ease of collecting Secchi data, collecting SDT 

on large numbers of lakes can be costly and challenging for monitoring agencies, especially in 

states with thousands of lakes.  However, in the past several decades, citizen-volunteer lake 

monitoring programs using SDT measurements have allowed data collection over larger regions 

than capable through local and state agencies alone.  The accuracy of volunteer collected data 

has been reported by several authors to be comparable to data collected by professional 

monitoring personnel and have shown no statistical difference in summer averages of SDT 

compared to professional measurements (Heiskary, Lindbloom, & Wilson, 1994; Kerr, Ely, Lee, 

& Mayio, 1994; Obrecht, Milanick, Perkins, Ready, & Jones, 1998, Canfield, Brown, Bachmann, 

& Hoyer, 2002).  However, extending volunteer collection programs to thousands of lakes, on a 

statewide level, is currently still cost and logistically prohibitive in many areas. 
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 Satellite remote sensing using Landsat Thematic Mapper (TM) has been explored in 

several studies as a method of reducing the cost and labor of sampling water clarity in the field 

(Khorram and Cheshire, 1985; Lathrop, 1992; Kloiber, Anderle, Brezonik, Olmanson, Bauer, & 

Brown, 2000; Dewider and Khedr, 2001).  An advantage of using remote sensing is that data for 

multiple lakes within a single image can be collected quickly and relatively inexpensively.  

Remote sensing technology has been used for several years in oceanography to measure 

chlorophyll, water color, and suspended sediments over large areas, but has only recently been 

explored in lake studies (Packard & Emery, 1982; Kloiber, Anderle, Brezonik, Olmanson, Bauer, 

& Brown, 2000).  Although sensors such as Landsat TM were primarily designed for detecting 

land features, recent improvements now provide better spatial and spectral resolutions for aquatic 

studies than previously available (Zilioli, 2001).  Recently, remote sensing has been shown to 

correlate well with lake SDT values (Khorram and Cheshire, 1985; Lathrop, 1992; Kloiber, 

Anderle, Brezonik, Olmanson, Bauer, & Brown, 2000; Dewider and Khedr, 2001).  However, to 

effectively implement remote sensing into a state monitoring program for inland lakes, there still 

remain many unanswered questions. 

For inland lakes, the relationship between field observations of SDT and satellite spectral 

values has been examined through simple linear regression analysis of in-situ measurements of 

SDT and spectral brightness values from the sensor (Lillesand, Johnson, Deuell, Linstrom, & 

Meisner, 1983; Lathrop & Lillesand, 1986; Kloiber, Brezonik, Olmanson, & Bauer, 2002).  

Regression models developed for single water bodies using a single image have resulted in high 

r2 values (0.80 – 0.90, p < 0.05) (Lathrop & Lillesand, 1986; Lavery, Pattiaratchi, Wyllie, & 

Hick, 1993; Giardino, Pepe, Brivio, Ghezzi, & Zilioli, 2001).  These strong relationships 

developed for single water body studies suggest that remote sensing may be useful for measuring 
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SDT in a large number of lakes across larger spatial scales.  However, fewer studies have used 

Landsat to measure SDT of multiple lakes, over a large area, or covering multiple images (Table 

1).  In a recent study, Kloiber, Anderle, Brezonik, Olmanson, Bauer, & Brown (2000), developed 

regressions between data acquired from a single Landsat TM image and field observations of 

SDT from 47 lakes, in Minnesota, USA.  They also found high r2 values (0.72 – 0.86).  Previous 

studies have shown that several factors influence the reliability and the strength of regression 

relationships between field-observed SDT and satellite data.  For example, Kloiber, Brezonik, 

Olmanson, & Bauer (2002) suggest that reliable SDT relationships can be developed with field 

SDT data collected within + 7 days of the satellite over- flight and using pixels extracted only 

from within the pelagic areas of the lakes.  However, it is unclear from the current literature if 

the relationships developed in previous studies can be applied to a large number of lakes within a 

large geographic region, which include a broad range of SDT values.  Before we can apply these 

methods to a statewide scale, further research is needed.   

Our objectives in this study were to determine if we could use Landsat-7 data to measure 

lake water clarity across a large region of lakes within three images in a single path (94,350 

km2), and to determine how the regional distribution of SDT affects models of regional lake 

water clarity.  We regressed field observations of SDT against Landsat spectral values of 93 

lakes from three images in Michigan, USA. 

2.  Methods  

2.1. Study area 

The state of Michigan has approximately 3,500 inland lakes < 10 ha in size and many 

thousands of smaller lakes (unpublished data from the Michigan Department of Environmental 

Quality).  Our study lakes include 93 lakes in the lower peninsula of Michigan (Figure 1).  The 
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lakes are distributed throughout an area of 94,350 km2, which makes up approximately 80% of 

the lower peninsula of the state.  Our lakes range in surface area from 12 – 4125 ha with a mean 

Secchi depth of 3.1 m (Table 2). 

2.2.  Field Observations 

Field observations of SDT data were obtained for 93 lakes from three sampling 

programs: (1) the Michigan Citizens Lake Monitoring Program (CLMP), (2) the Michigan 

Department of Environmental Quality’s (MDEQ) Lake Water Quality Assessment (LWQA) 

Monitoring Program, (3) Michigan State University (MSU; Table 2).  We selected lakes that: (1) 

were sampled from late July through August to ensure samples were taken during the summer 

stratification period; (2) had a surface area of > 10 ha within the lower peninsula of Michigan; 

and (3) were sampled within + 7 days of the satellite imagery. 

2.3.  Satellite image data 

We used three Landsat-7 Enhanced Thematic Mapper Plus (ETM+) scenes from August 

28, 2001 from ground track Path 21 (Worldwide Reference System-2) that covered the lower 

peninsula of Michigan (Figure 1).  Spectral digital number (DN) values were extracted for each 

lake within the pelagic region of each lake, identified by creating an area of interest (AOI) using 

ERDAS Imagine version 8.4 image processing software.  The pelagic region of each lake was 

defined within an area > 4.5 m in depth.  We used bathymetric maps to identify the 4.5 m depth 

contour within the 80 sample lakes for which we had maps, to ensure that each AOI would be 

free of reflections from the lake bottom or submerged macrophytes.  Bathymetric maps were not 

available for 13 sample lakes.  For the 13 lakes without bathymetric maps, we created an AOI for 

each lake from groups of pixels within the center of each lake, avoiding any shoreline or shallow 
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areas.  From each lake AOI, we extracted the mean DN for each spectral band to use in all 

subsequent analyses.  Our AOI values ranged from 8 to 1012 pixels (+ 183 pixels). 

2.4.  Statistical analysis 

All statistical analyses were done using SYSTAT (SPSS Software, Inc., 2001).  Prior to 

the regression analysis, examination of probability distribution plots indicated that a natural log-

transformation was necessary for SDT.  We developed a linear regression model using the band 

ratio of ETM1/ETM3 as the independent variable and the natural log of SDT as the dependent 

variable.  Previous studies found these regression variables to be the best predictor of SDT 

(Lathrop, 1992; Pattiaratchi et al., 1994; Kloiber et al., 2000).  Outliers and lakes having large 

leverages within the SDT and Landsat datasets were removed from the final regression analysis, 

reducing the number of lakes from 96 to 93. 

To examine the role of lake SDT distribution in our regression model, we developed an 

additional regression model based on a subsample of our complete dataset with a different SDT 

distribution.  We used a manual selection technique to create a subsampled dataset that matched 

a previous study that found a strong relationship between multiple lake SDT values and Landsat 

(Kloiber et al., 2000).  To compare the regressions of the complete and subsampled datasets, we 

used a slope heterogeneity test and analysis of covariance (ANCOVA).  We also performed an F-

test on the residual values to determine if there was a significant difference between the 

variances of the residuals of each dataset, and to ensure that the residual distributions about the 

mean of each dataset were simply not an effect of the complete model having a larger sample 

size than the subsampled model. 

2.5 SDT distributions 
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 We extracted values of SDT in Figure 5 of Kloiber et al. (2000) to compare the 

distribution of our complete dataset to the Kloiber et al. (2000) distribution.  We also compiled a 

distribution of statewide Michigan summer lake SDT data, available from the US EPA Storage 

and Retrieval (STORET) database.  These data included 675 lakes (>20 ha) sampled from the 

1970’s through the 1980’s.  Data from some lakes were averaged across sample years if multiple 

years were sampled. 

 

3.  Results 

Our regression of SDT and ETM1/ETM3 produced an r2 value of 0.43 (p < 0.001; Figure 2).  

To examine why our models explained much less variation than previous studies, we compared 

the SDT distribution of the 47 lakes included in the Kloiber et al. (2000) study to the distribution 

of our 93 lakes.  We found that approximately 62% of the lakes used in the Kloiber et al. (2000) 

study had a SDT of 1.5 m or less (Figure 3).  For the 93 lakes used in our study, only 9% had a 

SDT of 1.5 m or less (Figure 3).  According to the lake trophic state index definition developed 

by Forsberg & Ryding (1980), the lakes included in Kloiber et al. (2000) are predominantly 

eutrophic.  The lakes included in our study would be considered largely mesotrophic to 

oligotrophic (Figure 3).  To examine the effect these different distributions may have on SDT 

prediction, we manually adjusted our SDT sample distribution to have a mean Secchi depth of 

1.8 meters and a distribution with 47% of the lakes having a SDT of < 1.5m.  This subsample 

included 17 lakes and resembled the sample distribution found in the Kloiber et al. (2000) study 

(Figure 4).  The regression for this subsampled dataset had an r2 value of 0.82 (p < 0.001; Figure 

5). 
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We compared the trend lines from the regressions of our two models, the complete 

dataset model (n = 93) and the subsampled dataset model (n = 17), and found that the difference 

in the slopes of the two models was not statistically significant (ANCOVA p = 0.247; Figure 6).  

We also examined the residuals against their predicted fitted value (Figure 7).  This analysis 

suggests that there is less variability in the residuals about the mean for the subsampled dataset 

than the complete dataset, thus leading to the lower r2 value of the complete dataset model.  We 

used an F-test to determine that the variance of the residuals of the two datasets were not 

significantly different.  This test indicated that there is a significant probability that the residual 

variances in the two datasets are statistically different (F = 2.86, p = 0.0099). 

Finally, we further explored the models by plotting the residuals against the observed Secchi 

values to determine if the residual errors differed in closeness of fit about the mean at different 

SDT values (Figure 8).  This analysis suggests that the complete dataset model may provide 

better SDT predictions, as its confidence intervals for the predicted mean are narrower for both 

shallower and deeper Secchi depths than for the subsampled dataset with much wider confidence 

intervals. 

 

4.  Discussion 

Our results show that we can use a standard regression model for 93 lakes within a large 

geographic region, encompassing multiple Landsat scenes, to predict SDT.  These results are in 

agreement with authors such as Lathrop and Lillesand (1986) who recommended the 

establishment of common statistical models (e.g. standardized regressions) to use remote sensing 

for monitoring water quality parameters and enhance the development of future sensors tailored 

to freshwater lake systems.  Currently there are still many challenges to applying these 
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approaches to large numbers of lakes within a large geographic region.  For example, several 

previous studies have developed successful statistical relationships between a single Landsat 

imagery and a single lake or water bodies within very localized areas.  However, to our 

knowledge only Kloiber et al. (2000) has examined this relationship on a much large r scale, 

using 47 lakes within a 7,700 km2 area.  The results from Kloiber et al. (2000) show promise in 

developing even larger scale satellite-based water clarity monitoring protocols using our current 

systems.  Our study expands on this work by examining almost twice the number of lakes within 

an area of approximately twelve times the areal extent of the Kloiber et al. (2000) study.  

However, the result of our regression using our complete dataset was substantially lower than 

those in the Kloiber et al. (2000) study.  Other previous single- lake studies using similar Landsat 

bands also have higher regression results than we did (Lathrop, 1992; Pattiaratchi et al., 1994; 

Cox et al. 1998).  This discrepancy may have been a result of our SDT distribution included in 

our complete dataset.  Our complete dataset model consisted of a broad range of SDT values, 

including deeper SDT lakes.  Lakes with deeper SDT values return less signal reflectance from 

algal turbidity in the water column to the Landsat sensor and, thus, may not be well detected 

using current sensors.  In contrast, the Kloiber et al. (2000) study was based on a cluster of lakes 

within the metropolitan area of Minneapolis and St. Paul, Minnesota, USA, where over 60% of 

the lakes included in this study are eutrophic (Forsberg & Ryding, 1980).  Our subsampled 

dataset incorporated a larger percentage of eutrophic lakes, which yielded a comparable r2 result 

to the Kloiber et al. (2000) study.  This suggests that inter- lake variably plays an important role 

in influencing the strength and reliability of regression models of Landsat and lake SDT. 

 Two remaining questions include: (1) what are the best ranges of SDT that can predicted 

from Landsat; and (2) what are the best regression models for regions with a wide range of 
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Secchi depth values?  To address the first question, we explored the residual plots of each dataset 

against the predicted ETM values (Figure 7).  This analysis is useful to determine how the 

residual errors differed in closeness of fit about the mean for both models.  The confidence 

intervals may provide an estimate of the range of values (the upper and lower limits) within 

which the true distribution is likely to lie.  The confidence intervals of the subsampled dataset 

were wider in both shallow and deep Secchi depth locations than the intervals of the complete 

dataset.  Although a wider interval in the subsampled dataset may partially be related to the 

much smaller sample size of the subsampled dataset, the wider interval may also indicate a 

higher overall degree of uncertainty, or possibly inconstant variance throughout the residual 

terms (Van Belle, 2002).  We also explored the possible relationships between the residuals in 

each dataset and the observed SDT values to determine how the residual errors differed in 

closeness of fit about the mean at different SDT values for both models (Figure 8).  Both the 

complete and subsampled dataset plots show a distinct cluster of residual values within the 2 – 3 

m Secchi range and a narrowing of the confidence intervals within this range.  This may suggest 

that our models are better suited for predicting Secchi depths within these ranges than they are at 

predicting Secchi depth at the shallow or deep end of the distribution.  Thus the implication is 

that our models may be more useful for predicting Secchi depths within a specific range (e.g. 2-3 

m) but may become increasingly uncertain at shallower or deeper Secchi depths as the residual 

relationship becomes more poorly defined and the confidence intervals widen.  Overall, our 

residual analyses showed a much larger spread of the confidence intervals in the subsampled 

dataset compared to the complete dataset.  This suggests the complete model may be better at 

predicting Secchi depth than the subsampled dataset with the higher r2 value. 
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 To address the question of which regression model is better for predicting SDT, we first 

need to consider the goal of the study in question.  For shallow SDT lake studies within a 

moderate-scale geographic region, models such as our subsampled dataset and the Kloiber et al 

(2000) study should provide desirable results.  This type of investigation could be particularly 

useful in urban watershed remote sensing studies where water clarity of eutrophic lakes is of 

particular interest to lake managers.  However, if the goal is to examine SDT at a statewide level, 

a broader range of inter- lake variability must be considered.  For example, our complete model, 

with a lower r2 result, incorporated a wide range of SDT.  A wider range of SDT should be 

expected when modeling many lakes throughout a large geographic region.  In fact, the range of 

the SDT data included in our complete dataset model is comparable to the existing range of SDT 

collected within state of Michigan, based on 675 lakes sampled from the 1970’s to the 1980’s 

(US EPA STORET; Figure 9). 

Remote sensing can play a vital role in reducing the cost, labor, and time required to 

develop statewide water clarity assessments that are currently impossible by traditional field 

operations.  However, caution should be used in developing assessment criteria based on 

remotely sensed data.  Current sensors may be able to effectively measure shallow Secchi depth 

lakes, but may not do as well for lakes with deeper Secchi depths.  Without accounting for the 

complete distribution of Secchi within the state, it may be complicated to ability to apply a 

regression model based on Landsat-SDT relationships to a statewide assessment of Secchi.  For 

example, the lake STORET data for Secchi in the state of Michigan ranges from 0.5 – 8.0 m, 

with a mean of 3.0 m.  Our complete dataset captures this range, from 0.9 – 7.6 m with a mean 

3.1 m (Figure 9).  Therefore, it is important to recognize that a regression model based on SDT 
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reflectance data may produce lower r2 values once deeper SDT values are included to resemble a 

statewide distribution. 

 Developing a general statewide assessment of water clarity using Landsat satellite data 

needs to be simple and require limited sampling operations.  However, development of models is 

limited by ground data since the SDT and Landsat relationship must be based on sampling that is 

difficult to obtain on a statewide level.  Although we included ground observations from a 

number of reliable sources in an effort to increase our ability to relate SDT over a large area, 

such as the lower peninsula of Michigan, we were still somewhat limited in developing a dataset 

of over 100 lakes for this purpose.  For example, during this study, we experienced a large 

number of days with a high percentage of cloud cover that resulted in few available cloud free 

scenes.  In addition, we experienced difficulties in creating a single regression relationship which 

included lakes from multiple paths.  We suspect the poor result from this model was caused by 

increased path to path atmospheric variations.  Within the three contiguous Landsat scenes used 

in this study, atmospheric corrections were not necessary for sampling SDT as a result of this 

imagery being on the same relative temporal scale, a single date (Song et al., 2001).   

 Finally, we felt that although a standard equation relating Landsat data and water clarity 

over a large area can be used to predict SDT, the sensitivity of the regression model to the 

distribution of lake calibration data must be taken into consideration.  The SDT distribution 

influences the reliability and the strength of regression relationships based on ground observation 

and satellite data, such as the relationships previously identified by Kloiber, Brezonik, 

Olmanson, & Bauer (2002).  Further research is required to determine the optimal ranges in 

which Secchi depth can be predicted from Landsat data, the reliability of predictive models in 
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shallow as well as deep SDT lakes, and the best regression estimates for states with a wide range 

of Secchi depth values. 
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Table 1. Landsat remote sensing studies of Secchi depth using multiple inland lakes. 

Citation Study Site Sample Dates Number 

of lakes 

Secchi 

range (m) 

r2 

 

Kliober et al. 

2000 

 

Twin Cities 

Metropolitan Area, MN 

Sept. 1991 47 0.5 - 3.5 0.83 

Dekker and 

Peters 1993 

 

Loosdrecht lakes, 

Amsterdam 

June 1986, 

July 1987 

15 

 

0.26 - 3.1 0.66 - 0.81 

Lillesand et al. 

1983 

 

 

Otertrail Lakes Region 

and Twin Cities 

Metropolitan Area, MN 

July 1980, 
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Table 2.  Information for the 93 study lakes used to collect field observations. 

Surface Area (ha) Secchi (m) Sampling 

Organization 

Number of 

Lakes Mean Range Mean Range 

CLMP1 79 208 12 – 4125 3.2 0.9 – 7.6 

MDEQ2 13 545 60 – 3750 2.4 1.1 – 3.7 

MSU3 1 58 --- 3.1 --- 

Total 93 270 12 – 4125 3.1 0.9 – 7.6 

1Citizens Lake Monitoring Program 

2Michigan Department of Environmental Quality 

3Michigan State University 



Figure Legend 
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Figure 1.  The study area within Path 21 of the Landsat Worldwide Reference System-2 (WRS) 

in Michigan, USA.  The three individual scene rows within Path 21 used in this study are 

designated as  R29, R30, and R31.  All images are from the same acquisition date, 28 August 

2001. 
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Figure 2.
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Figure 2.  Regression of Landsat-7 ETM+ data (ratio of two bands, ETM1 and ETM3) and field 

measured Secchi depth transparency (natural log transformed) for 93 study lakes.   The 

regression model is ln(Secchi) = 1.830 (ETM1/ETM3) - 2.976.  The rmse residual value 

(standard error of estimate) has the same units as the predicted ETM values and represented 

our standard deviation.  The dashed lines represent the 95% confidence interval. 
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Figure 3.  Histogram of the percent of lakes in each 0.5 m Secchi depth category for the 47 lakes 

in Kloiber et al. (2000), and for the 93 MI study lakes (complete dataset).  Vertical dashed 

lines represent the limits of the three trophic state categories (Forsberg & Ryding, 1980). 
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Figure 4.  Histogram of the percent of lakes in each 0.5 m Secchi depth category for the 47 lakes 

in Kloiber et al. (2000), and for the MI subsampled dataset (n=17).  Vertical dashed lines 

represent the limits of the three trophic state categories (Forsberg & Ryding, 1980). 
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Figure 5.
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Figure 5.  Regression of Landsat-7 ETM+ data (ratio of two bands, ETM1 and ETM3) and field 

measured Secchi depth transparency (natural log transformed) for the MI subsampled dataset.   

The regression model is ln(Secchi) = 2.630 (ETM1/ETM3) - 5.009.  The rmse residual value 

(standard error of estimate) has the same units as the predicted ETM values and represented 

our standard deviation.  The dashed lines represent the 95% confidence interval. 
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Figure 6.
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Figure 6.   Regression of Landsat-7 ETM+ data (ratio of two bands, ETM1 and ETM3) and field 

measured Secchi depth transparency (natural log transformed) for the MI complete and 

subsampled dataset for slope comparison of each of the dataset regressions.  The difference 

between the two slopes was not statistically significant (ANCOVA, p=0.247).  The dashed 

lines represent the 95% confidence intervals around each regression. 
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Figure 7.  Scatter plots of the residuals for the complete and subsampled datasets against the 

predicted fitted value.  The dashed lines represent the 95% confidence intervals. 
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Figure 8.
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Figure 8.  Scatter plots of the residuals for the complete and subsampled datasets against the 

observed Secchi values.  The dashed lines represent the 95% confidence intervals. 
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Figure 9.
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Figure 9.  Histogram of the percent of lakes in each 0.5 m Secchi depth category from a 

statewide lake database (n=675) and for the 93 MI study lakes (complete dataset). 


